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Abstract—Despite their widespread adoption in cloud computing, multicore processors are heavily under-utilized in terms of computing
resources. To avoid the potential for negative and unpredictable interference, co-location of a latency-sensitive application with others
on the same multicore processor is disallowed, leaving many cores idle and causing low machine utilization. To enable co-location
while providing QoS guarantees, it is challenging but important to predict performance interference between co-located applications.
We observed that the performance degradation of an application can be represented as a piecewise predictor function of the aggregate
pressures on shared resources from all cores. Based on this observation, we propose to adopt regression analysis to build a predictor
function for an application. Furthermore, the prediction model thus obtained for an application is able to characterize its contentiousness
and sensitivity. Validation using a large number of single-threaded and multi-threaded benchmarks and nine real-world datacenter
applications on two different platforms shows that our approach is also precise, with an average error not exceeding 0.4%.

Index Terms—cross-core performance interference, memory subsystems, multicore processors, performance analysis, prediction

model.

1 INTRODUCTION

S the microprocessor industry is rapidly moving to-

wards multi/many-core architectures and much of
the world’s computing is continuously moving into the
cloud, multicore processors have been widely adopted to
serve as the mainstream processors in datacenters, which
house large-scale web applications and cloud services.

However, for modern datacenters, the utilization of
computing resources is very low, i.e., around 20% [3],
[25]. Researchers have observed that when multiple
applications are co-located on the same multicore pro-
cessor, contention for shared resources in the mem-
ory subsystem can cause severe cross-core performance
interference [11], [25], [42], [43], [49], [56], [55], [54],
[50]. When the datacenter houses some user-facing and
latency-sensitive applications which have specific qual-
ity of service (QoS) requirements, such as web search,
these applications might be interfered by co-location,
causing negative and unpredictable QoS violation. As
a result, co-location for such applications is disallowed,
leaving many cores idle and causing low machine uti-
lization [25]. To enable co-location while providing QoS
guarantees, it is challenging but important to predict
the performance interference between co-located appli-
cations.

Despite extensive efforts on mitigating the perfor-
mance interference due to resource contention on mul-
ticore processors, not much work is directly applica-
ble to the datacenter co-location problem. The major-
ity of existing solutions [5], [16], [19], [24], [26], [27]
classify qualitatively how aggressive an application is
for shared resources and make co-location decisions

accordingly. To predict quantitatively the amount of the
performance degradation suffered by an application due
to co-location, brute-force profiling is frequently used
but impractical for a datacenter housing N applications
(with CJ¢ co-locations on an m-core processor), where
N can be 1000+. To alleviate this problem, Bubble-Up
[25] characterizes the sensitivity and aggressiveness of
an application by co-running it with a stress-testing
application (called the bubble). However, it is limited to
predicting the performance interference between two co-
running applications only. Bandit [9] does not have this
limitation but focuses on bandwidth contention only.
SMiTe [54] aims to predict performance interference
between SMT co-locations.

In our recent research, we have empirically observed
that the performance degradation of an application can
be represented as a piecewise predictor function of the
agqregate pressures on shared resources from all cores,
regardless of which applications are co-running and
what their individual pressures are. In particular, the
piecewise function indicates that different dominant con-
tention factors can be accommodated more accurately
with different subfunctions in its different subdomains.

Based on the above observation, we introduce an
empirical approach to efficiently and precisely predicting
the performance degradation suffered by an application
due to arbitrarily many co-located applications. To build
a precise predictor function efficiently, we proceed in
two phases. The key lies in decoupling the construction
of the piecewise functional relation itself from that of
its coefficients. The first phase uses training workloads
to build an abstract model, which defines the func-
tional form used to relate the performance degrada-



tion of any application to the aggregate pressures on
shared resources from all cores, with its coefficients
undetermined. This phase is platform-dependent but
application-independent. The second phase determines
the application-specific coefficients for the functional
form obtained earlier. Thus, the more costly first phase
can be amortized by all applications in a datacenter.
This paper makes the following contributions:

o We present empirical evidence for the existence of
a piecewise functional relation between the per-
formance degradation of an application and the
aggregate pressures on shared resources from all
cores, regardless of what co-running applications
and their individual pressures are.

o We introduce a two-phase regression approach to
building a predictor function. Our approach is ef-
ficient because the first phase is performed only
once for a platform and the second phase can be
done in O(1). Our approach is also precise as it
has an average error not exceeding 0.4%, validated
using a large number of single- and multi-threaded
benchmarks as well as nine real-world datacenter
applications on two platforms.

o We extend our prediction model to characterize the
inter-thread contention for multi-threaded applica-
tions in terms of accumulated CPU cycles consumed
by all threads. With the model we can predict
the increased CPU cycles caused by inter-thread
contention, which directly affects the scalability of
multi-threaded applications. Evaluations using rep-
resentative PARSEC benchmarks show that our ap-
proach is precise to predict the consumed CPU
cycles from all threads, with an average error of
0.56%.

o We evaluate our prediction model in terms of its
prediction precision and compare the performance
interference on representative Intel and AMD multi-
core processors. Our experimental results also show
that inclusive caches can cause severe performance
interference for some applications.

The rest of the paper is organized as follows. Section 2
motivates this work. Section 3 presents our regression
approach. Section 4 describes our approach to charac-
terize inter-thread contention for multi-threaded appli-
cations. Section 5 presents our experimental validation.
Section 6 discusses the related work. Section 7 concludes.

2 MOTIVATION

We have two key insights from our empirical obser-
vations. First, the performance degradation suffered by
an application due to co-location can be represented
as a predictor function of the aggregate pressures on
shared resources from all cores, regardless of which
applications are co-running and what their individual
pressures are. Second, a predictor is piecewise in order
to capture different dominant contention factors more
accurately with different subfunctions. In this section,

we use 429.mcf from SPEC2006 to introduce the key
elements involved in building a prediction model.

In this paper, the performance degradation of a bench-
mark is computed by:

PD = (EzeTimeco—run — ExeTimeso,)/ExeTimesor,

where EzeTimesy, (ExeTimeco—run) is its execution
time in solo (co-running) execution.

The platform we use for our motivation example is
an Intel quad-core Xeon E5506 with 32KB L1 DCache,
32KB L1 ICache, 256KB L2 cache, a 4MB shared L3 cache
and a memory bandwidth of 12.8GB/s. We focus on
two shared resources, shared cache and memory band-
width. We generated randomly 200 workloads (with
three applications per workload) from SPEC2006 to co-
run with 429 .mcf. For each workload, we calculate the
aggregate pressure for each shared resource and seek for
a functional relation with the performance degradation
of 429 .mcf.

Measuring Aggregate Pressures: For a given work-
load, let the three co-runners of 429 .mc £, denoted Ay,
be A, A> and As. First, we use PMUs to collect each
benchmark’s pressure on (i.e.,, consumption of) each
shared resource in solo execution. Let cache; (bw;) be
the individual pressure on shared cache (bandwidth)
from A;, where i € {1,2,3,mcf}. We then combine
the individual pressures on a resource to obtain the
aggregate pressure on the same resource:

cachemes + X3_ cache;
bwimes + 331 bw;

Pcache =

Py = (1)

Collecting Data Points: For each workload w, the
performance degradation of 429.mcf is recorded as
PD, and the aggregate pressures P..che and Py, are
found by (1), giving rise to one data point, denoted
((Pcachea wa)7 PDw)

Finding the Functional Relation: With 200 ran-
domly generated workloads to co-run with 429 .mcf, we
obtain 200 data points for 429 .mcf. The Xeon platform
used for this experiment has a bandwidth of 12.8GB/s.
With [0, 12.8GB/s] being partitioned into three band-
width bands (as described in Section 3.2), we obtain the
following piecewise function:

PDCachefBound if wa < 3.2
PD'mcf = PDCache/Bwaound if 3.2 S wa S 9.6 (2)
PDpw - Bound if Py > 9.6

where

0.485 Pyyy 4 0.183 Pegene — 0.138
0.706 Py + 1.725 Pegene — 0.220 (3)
0.907 Py, + 3.087Pegche — 0.561

PDCac}LefBound
PDC(LC}Le/BW7BOu7Ld
PDpw_—Bound

The R-squared value for PD,,.¢ is 0.90, indicating a
strong fit. Figure 1 plots the three subfunctions of P Dy,¢
given in (3) that capture three different types of dom-
inant contention factors. The performance degradation
of 429.mcf varies at different rates in the three cor-
responding subdomains. This sheds some light on the
precision behind our prediction.
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Fig. 1: Existence of a piecewise function relating the
performance degradation of 429.mcf to the aggregate
pressures on shared cache and memory bandwidth. The
three planes are the plots of the three subfunctions given
in (3).
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Fig. 2: Correlation between cache and bandwidth con-
sumptions, with each data point standing for one appli-
cation from a set of 29 applications in SPEC2006.

3 OUR REGRESSION APPROACH

Our insights lead to the design of a brute-force regression
approach to determine the functional relation between
the co-running applications and the performance degra-
dation. However, the brute-force approach would be
impractical for a datacenter housing a large number of
applications. Therefore, we introduce a scalable two-
phase approach to solving the datacenter co-location
problem. In this section, we first discuss how to charac-
terize an application into a vector for regression analysis
and then present the two-phase approach.

3.1

As discussed in Section 2, we characterize an appli-
cation using its individual consumptions of (pressures
on) shared resources in solo execution. We do so by
making use of PMUs. By now, we focus on two shared
resources, shared cache and memory bandwidth. The
critical issue here is to identify appropriate PMUs to use.
For illustration purposes, we continue to consider the

Extracting Feature Vectors

Intel platform described in Section 2, with private L1
and L2 caches and a shared L3 cache.

o Shared cache consumption. To measure the shared
cache (L3) consumption, L2_LinesIn rate is recom-
mended [41], [43], [55], which gives the number of
cache lines brought from the L3 cache for a given
period of time, including passive accesses triggered
by cache misses and proactive prefetching.

o Shared memory bandwidth consumption. An applica-
tion’s bandwidth consumption can be profiled using
Intel’s PTU (Performance Tuning Utility) [13], which
offers the hardware event counters for memory
system performance analysis. PTU can report the
System Memory Throughput periodically. In our ex-
periments, we use the average throughput of an
application as its bandwidth consumption.

Therefore, an application A is characterized into a
feature vector of the form FV(A) = (cache;, bw;). We ob-
served that cache; and bw; are not independent variables
as they are related by the same memory hierarchy. Figure
2 depicts their correlation for the 29 SPEC2006 bench-
marks. A benchmark is represented by a point, with the
horizontal axis representing its cache consumption and
the vertical axis for its bandwidth consumption.

From Figure 2, a strong and positive correlation can
be observed. The Pearson product-moment correlation
coefficient can be up to 0.867, meaning that multi-
collinearity for cache and bandwidth consumptions ex-
ists. In multiple regression, multicollinearity can make
the estimation of regression coefficients unreliable [10],
[18], especially for our prediction outside the training
set used. In order to construct our prediction model
using regression analysis and eliminate potential mul-
ticollinearity, we conduct principal component analysis
(PCA) as recommended by previous work [10], [18]. PCA
uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal
components.

3.2 Two-Phase Regression Approach

For the datacenter’s co-location problem, we should do
more than the brute-force approach, because a datacen-
ter may house hundreds to thousands of applications
with the frequent development and updating of these
applications. Repeating the same regression analysis as
stated in Section 2 for each application is impractical.
Fortunately, we have made an important observation
about a predictor function used for an application on a
given computer platform: its coefficients are application-
specific but the actual functional relation, i.e., form itself
is not. We introduce a two-phase regression approach,
as shown in Figure 3, to build a predictor function
efficiently for an application.

The first phase is platform-dependent but application-
independent. This phase builds an abstract prediction
model, i.e, a piecewise function to be shared by all
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applications in a datacenter, with its coefficients undeter-
mined. The second phase instantiates the abstract model
for a given application to determine its application-
specific coefficients. By decoupling the construction of
the two components, the more costly first phase is
performed only once for a platform, with its cost being
amortized by all applications in a datacenter.

Section 3.2.1 describes how to build an abstract predic-
tion model. Section 3.2.2 describes how to instantiate the
abstract model for a given application. The analysis and
evaluation of efficiency of our approach can be found in
Appendix B.

3.2.1 Phase 1: Building an Abstract Model

All the components of this first phase are shown in
the top part of Figure 3. The “Application Warehouse”
contains all applications routinely run in a datacenter.
The “Feature Extractor” is responsible for obtaining each
application’s individual consumptions of (pressures on)
shared resources and storing these as a feature vec-
tor in the “Feature Database” (Section 3.1). The fea-
ture vectors are used to compute the aggregate pres-
sures of co-runners on shared resources and allow the
“Training Set Generator” to generate training workloads
(Section 3.2.1.1). The “Co-Running Trainer” records the
performance slowdowns of all training workloads (Sec-
tion 3.2.1.2). The “Abstract Model Creator” builds an
abstract prediction model via regression analysis (Sec-
tion 3.2.1.3).

3.21.1 The Training Set Generator: A datacenter
warehouse can contain a large number of applications,
say, 1000+. It is impractical to use them all as training
workloads. We create a training set so that the ware-
house is evenly sampled based on the feature vectors of
all applications stored in the “Feature Database”. This
ensures that different degrees of contention for shared
resources are all represented by the training workloads.

TABLE 1: An interference table for a m-core processor,
with each co-running workload Wy, ; containing m — 1
co-runners.

Application | Co-Runners | A}s Performance Degradation
Al Wa, 1 PDay,wa,a
A Waio PDaywa, g
Ao Wa, 1 PDay,wa, .
A | Wae PDaswa, g

We proceed in three steps. First, we define an n-
dimensional feature space, with one dimension repre-
senting the consumption of each distinct shared resource.
In this paper, the feature space has two dimensions. Each
application is mapped into the feature space using its
feature vector. Second, we partition the feature space
into Negehe X Npyw grids, where Negene and Ny, are
user-supplied values. The applications falling into the
same grid can be regarded as having a similar resource
consumption. Finally, we sample one point from each
non-empty grid by adding it to the training set.

3.2.1.2 The Co-Running Trainer: Given an m-core
processor, the co-running trainer randomly generates
a set of workloads of size m from our training set,
launches these workloads one by one, and records every
application’s degradation.

When generating co-running workloads, there is no
need to enumerate all possible co-locations from the
training set, which can be too expensive. Instead, we
guarantee that every application appears in () different
workloads (with no duplicates) to provide enough data
points for our regression analysis, where () is a user-
supplied parameter.

The training data are organized into an interference ta-
ble, shown in Table 1, where each row has three columns:
an application A;, its set W4, ; of m—1 co-runners, and
the performance degradation PDa,w,, ; of A; in this j-
th workload. For each workload, m new rows are added
to the table, one for each application in the workload.

3.2.1.3 The Abstract Model Creator: Given the in-
terference table for training applications and their feature
vectors, we (1) compute the aggregate consumptions of
shared resources, (2) identify the subdomains for the
piecewise predictor function being created, and (3) de-
termine their corresponding subfunctions but leave their
coefficients undetermined. To accomplish these tasks,
we provide an interface for the user to define a model
search space via a configuration file. Our model creator
will automatically search this space to find an optimal
solution by performing a regression analysis.

Configurations: Figure 4 shows the syntax of a
configuration file. Each option admits multiple values
so that many different configurations can be tried to find
the best solution.

o Aggregation. The “pre-processing” option allows the
user to specify how to process the individual re-



#Aggregation

#Pre-Processing: none/exp(p)/log(p)/pow(p)

#Mode: add/mul
#Domain Partitioning: (shared-resource:, condition:), ...
#Function: linear/polynomial(p)/ user-defined

Fig. 4: Syntax of a configuration file.

source consumptions recorded in a feature vector
before they are aggregated. There are presently four
choices: none, exp(p), log(p) and pow(p), which trans-
form v into v, p?, log,v and v?, respectively. The
default is none.

The “mode” option specifies an arithmetic opera-
tor used for combining the pre-processed resource
consumptions of co-runners for a shared resource
into their aggregate pressure on the same shared
resource. There are presently two choices: add and
mul, with add set as the default.

o Domain Partitioning. This option allows the user
to define the subdomains of a predictor function
in terms of shared resource pressures. For each
(shared-resource;, condition;), shared-resource; is a list
of shared resources, which is (P.uche), (Ppw) OF
(Peache, Pow), and condition; is a conditional expres-
sion in terms of variables in shared-resource;. As
a shorthand, equal(nq,n2,...) is a condition indi-
cating that the j-th resource in shared-resource; is
partitioned into n; equal bands. One example is
(Pyw,equal(4)). The user can leverage some empir-
ical knowledge to perform this task. In particular,
Tang et al. [41] observed that contention for band-
width has a more dominating effect on performance
interference than for other shared resources and Xu
et al. [49] observed that performance degradation
worsens when bandwidth consumption approaches
the system peak bandwidth. Some arbitrary user-
defined conditions are also admitted.

o Function. This option specifies the functional form
used for interpolation. The default is linear, i.e.,
polynomial(1), indicating a functional form of al x
Proche + a2 X Py, + a3. Some user-defined functions
are also allowed.

Regression Analysis: We find the best piecewise
predictor function as follows. We try all possible con-
figurations and pick the one with the largest average
R-squared value, indicating the best fit possible. Given a
data set consisting of n observed values x; each of which
has an associated predicted value z;, let z = Y7 | x;/n
be the average of the observed values. The R-squared
value is 1 — 7" | ((z; — )%/ (z; — 2)?).

In a configuration file, there are four options, with
each specifying a set of values. Collectively, they define
a set C of configurations as their Cartesian product to be
searched for. Let T' = {A;, ..., Ap} be the training set of
size P. For every application A; € T, let R; be the set
of @ rows in the interference table given in Table 1 that
contains the performance slowdowns for A;. For every

(¢, A;) € C x T, let D(c, A;) be the set of ) data points
created from R;, one from each row of R;, as follows.
For a row (Ai,Wa,;, PDa;w,, ;) in R; the feature
vectors for its associated applications are available in
the “Feature Database”. The data point obtained from
the row is ((Peache, Pow)s PDa; w,. ), where Peyche and
P, are the aggregated pressures on shared cache and
bandwidth computed according to the configuration c.

Let f(c, A;) be the interpolating function over D(c, 4;).
Let Fitness(c, A;) be the R-squared value of f(c, A;).
Let AVG_Fitness(c) be the average of the R-squared
values for all applications in the training set 7" under
configuration c:

P
AV G_Fitness(c) = Z Fitness(c, A;) /P (4)
i=1
The best prediction is made under configuration c,; if

AV G_Fitness(copt) > Inaé( AV G_Fitness(¢') (5)
ce

We also record the best predictor functions found for all
applications in the training set under the best configu-
ration:

best_funs =

{f(copt; A)|A € T} (6)

We have also tried a few more sophisticated interpola-
tion methods. However, the one described above is fast
and precise for the co-location problem addressed here,
as evaluated later.

3.2.2 Phase 2: Instantiating the Abstract Model

All the components of this second phase are shown
in the bottom part of Figure 3. For an application A4,
we instantiate the abstract model obtained earlier by
determining its application-specific coefficients. If A is
in the training set, we are done, because its coefficients
are already recorded in (6) in the first phase. Otherwise,
we proceed in the following four steps:
o Step 1. Determining the Feature Vector for A. This
is done only if it is not in the “Feature Database”.
o Step 2. Generating Co-Running Workloads. We
build a set C'S of workloads from the training set
to co-run with A. C'S contains C points for each
subdomain, where C is set by the user based on
the functional form found. So |C'S| is C' x S, where
S is the number of subdomains. To ensure that C
points are sampled evenly from the training set in
each subdomain, we generate all C}5~' possible co-
locations from the training set, where P is the size
of the training set and m is the number of cores. We
map these workloads into a two-dimensional space,
one for P.qcpe and one for Pp,. Finally, we partition
each subdomain evenly into C' strips/grids. Then
one point is sampled from each strip/grid. If some
strips/grids are empty, the partitioning is refined
until C' points are sampled.
o Step 3. Creating the Interference Table for A.
For each workload in CS, we co-run the m — 1



applications in the workload with A, record the
performance degradation of A, and finally, create its
interference table.

o Step 4. Determining the Coefficients for A. With
A’s interference table and the abstract model ob-
tained earlier in Section 3.2.1, we perform a re-
gression analysis to determine A’s coefficients and
obtain the instantiation of the abstract model for A.

This second phase takes O(1) as C'x S is small relative
to the number of workloads run in the first phase.

4 USING THE MODEL To CHARACTERIZE
INTER-THREAD CONTENTION FOR MuLTI-
THREADED APPLICATIONS

Besides predicting the performance interference between
simultaneously running applications, our model can fur-
ther be used to characterize the inter-thread contention
for multi-threaded applications. Inter-thread contention
is a significant issue affecting the scalability of multi-
threaded applications.

It is well-known that for multi-threaded applications,
scalability is a significant issue. Some existing works fo-
cus on providing performance metrics regarding to scal-
ability for multi-threaded applications on multi/many-
core systems [1], [22]. Besides, some tools are built to
analyze the scalability of applications [12]. Furthermore,
some concurrent data structures and synchronization
schemes have been proposed to improve scalability for
multi-threaded applications [32], [29]. In addition, re-
searchers also investigate sensible resource allocation
for multi-threaded programs [21], [40]. To predict band-
width demands of multi-threaded applications, DraMon
has been developed [46].

Earlier researches on the scalability of multi-threaded
applications have demonstrated that two factors would
negatively affect an application’s scalability: thread syn-
chronization and inter-thread resource contention. In
this paper, we only focus on the inter-thread resource
contention. Similar with the resource contention between
simultaneously running applications, memory subsys-
tem is the major source of inter-thread contention for
multi-threaded applications [46]. In this section, we first
show how shared resource contention would affect the
scalability of multi-threaded applications on CMPs (Sec-
tion 4.1), and then leverage our performance interfer-
ence model to quantitatively characterize inter-thread
contention for shared resources (Section 4.2).
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For a multi-threaded application, the execution time is
usually used as the performance metric, as suggested
by [1], [22]. Its execution time can be divided into two
parts: CPU execution time and CPU waiting time. The
CPU execution time represents the accumulated CPU
cycles consumed by all threads for executing the in-
structions, and the CPU waiting time represents the cost

Inter-Thread Resource Contention

#pragma omp parallel for
for( j = 0; j < STREAM_ARRAY_SIZE;
cl3] = aljl + bl3l;

j++)
Fig. 5: Synthesized STREAM kernel p.
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Fig. 6: Scalability of p on a six-core platform.

for thread synchronization. In this paper, we only focus
on the CPU execution time, and the scalability issues
caused by thread synchronization is beyond the scope
of this paper. Therefore, we use the accumulated CPU
cycles as our performance metric, and we will discuss
the relation between the CPU cycles and the execution
time in Section 5.

We use STREAM [31] to synthesize a benchmark to
demonstrate how the memory subsystem contention
affects the scalability of a multi-threaded application.
We denote the benchmark as p, which is shown in
Figure 5 and is synthesized following two principles.
First, p includes one loop body which is parallelized
using OpenMP. Second, the working set of p is evenly
partitioned across all threads, and each thread accesses
its own partition without interleaving or overlapping.
In particular, p does not include lock operations or data
sharing between threads. Only one global barrier is
introduced after the parallel loop, and its cost can be
ignored due to the long running loop body. Therefore,
p’s scalability is only affected by the inter-thread resource
contention.

We use a six-core Intel E5645 platform with a memory
bandwidth of 10.67GB/s (Details in Section 5) for our
discussion. Figure 6 shows our experimental results for
p’s scalability on the platform, with the horizontal axis
representing the number of threads and the vertical axis
representing the speedup over one thread. The orange
crosses show the scalability of p, meanwhile, the ideal
linear speedup is shown for comparison by the blue tri-
angle spots. From the figure, we can observe that the gap
between the real and the ideal speedups will increase as
the number of threads increases. As the design principle
of the benchmark p, there is no lock synchronization
and the cost of the global barrier can be ignored, so the
scalability is only affected by the inter-thread resource
contention. In particular, inter-thread contention delays
memory accesses and makes each thread consume more
cycles waiting for memory accesses.
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To demonstrate that the accumulated CPU cycles is a
reasonable metric when CPU waiting time is ignored,
we compute the speedup using the CPU cycles, and
compare it with the real speedup which is computed
using execution time. Note that when only one thread
is used, the CPU cycles equal to the execution time.
Figure 7 shows the result for p, with the orange crosses
representing the speedup computed using the execution
time, and the blue lines representing the speedup com-
puted using the profiled CPU cycles. In particular, the
consumed CPU cycles are profiled using Intel VTune,
which accumulates the CPU cycles from all threads.
According to Figure 7, speedup computed using CPU
cycles matches the real speedup very well, which con-
firms that CPU cycles is a reasonable metric when CPU
waiting time is ignored.

Figure 8 shows p’s accumulated CPU cycles from all
threads, which is normalized to one thread. It shows that
p consumes more CPU cycles as the number of threads
increases. In particular, when 6 threads are used, the
consumed CPU cycles will increase by nearly 20%. Since
the metric of consumed CPU cycles does not include any
cost of synchronization, the 20% slowdown is caused
by inter-thread contention. In particular, a n-threaded
application can be regarded as one single-threaded appli-
cation contending with n —1 single-threaded co-runners.
Therefore, we use our model to characterize such inter-
thread contention.

4.2 Predicting Inter-Thread Contention

We ignore all sequential regions in the multi-threaded
application and only focus on the parallel regions. As for
predicting the performance interference between mul-
tiple applications, we keep assuming that the number
of threads is equal or less than the number of cores.
Furthermore, this paper focus only on the applications
with the thread synchronization scheme being locks or
barriers, because the execution time of such applications
can be clearly divided into CPU execution time and CPU
waiting time. Applications using other synchronization
schemes, e.g., atomic operations, are beyond the scope
of this paper. First, we create the performance prediction
model for an application with the number of threads set
to 1. Second, we regard an application with n threads as
n co-running single-threaded applications, and predict
the increased CPU cycles, as discussed below.

Given a multi-threaded application A, which includes
m parallel regions, let A} represents the j-th parallel
region executed with ¢ threads. We rewrite the formula
to compute performance degradation as:

(CPUCYyclesco—run — CPUCYcleSsolo)
CPUCyclessolo

where CPUCYyclessoo (CPUCYcleSco—ryn) is the accu-
mulated CPU cycles of A in solo (co-running) execution.
We use CPU cycles instead of execution time to exclude
the thread synchronization cost for multi-threaded appli-
cation and focus on the CPU execution time. We create a
prediction model for each parallel region A}(j = 1,..,m)
using the approach in Section 3.2. Let f;(j = 1,...m) be
the predictor function for the parallel region A;, and let
cachej and bwj(j = 1,...,m) be the pressure of A} on
shared cache and bandwidth, respectively.

Now we use the model f; to predict accumulated CPU
cycles of A?(j = 1, ..., m), where n represents the number
of threads. When a parallel region is executed with
n threads, three issues will affect the consumed CPU
cycles. First, the number of instructions will increase due
to the cost of thread creation and termination. For long-
running parallel regions, the cost of thread creation and
termination is ignorable. In particular, for PARSEC[4],
the overhead is less than 2% for most applications.
Second, data sharing between threads will make positive
effects and slightly reduce the CPU cycles. This issue is
also ignorable as discussed in [52]. Third, inter-thread
resource contention will cause performance interference
and consume more CPU cycles for execution, and it
dominates the increased CPU cycles.

Therefore, the accumulated CPU cycles can be pre-
dicted as:

PD =

CPUCycles} = CPUCycles; x (14 f;(Plyche * 1, Py, x1)

@)
where CPUCYycles; is the consumed CPU cycles when
the region is executed with single thread, f; is the pre-

dictor function of the region obtained above, P , and



P} are the pressure on the shared cache and bandwidth
when the region is executed with single thread respec-
tively, and P!, ,. *n and Pj, *n are the accumulated
pressure of the n threads.

5 [EVALUATION

We demonstrate using a large number of benchmarks
and nine real-world applications available to us that our
approach can build a precise prediction model for an
application efficiently. The main platform used is an Intel
2.13GHz quad-core Xeon E5506 with a private 32KB L1
D-cache, a private 32KB L1 I-cache, a private 256KB L2
cache, a shared 4MB L3 cache and a memory bandwidth
of 12.8GB/s (with only two channels populated). The
other platform is a octa-core Intel Xeon E7-8830.
Section 5.1 describes our evaluation methodology and
the set of benchmarks used. Section 5.2 evaluates the
precision of our approach. Section 5.3 reports briefly our
results for larger Intel octa-core platform. Section 5.4
presents our results on predicting the scalability of multi-
threaded applications. Section 5.5 analyzes the effect of
different cache designs on performance interference.

5.1 Methodology and Benchmarks

We build a warehouse including the benchmarks from
SPEC2000, SPEC2006, LINPACK, PARSEC [4], and
Graph 500 and the nine real-world datacenter programs
listed in Appendix D with a total of 506 applications.
All are compiled using “GCC -O3” under Linux (kernel
2.6.18).

5.1.1 Applying Phase 1

In the first phase, we created a training set as
Section 3.2.1.1. With N_4cne =6 and Ny, = 10, there are 30
applications selected since half of the Ncgche X Nyw = 60
grids are empty. During training, we collected (=200
data points for each application as per Section 3.2.1.2.
With the 30 applications in the training set, we ran
30 x 200/4(cores) =1500 workloads. In the configuration
file given in 4, “pre-processing” is {none, exp(2), log(2),
pow(2)}, “mode” is {add, mul}, “domain partitioning”
is  {((Pow),equal(4)), (Peache), equal(4)), ((Peaches Pow),
equal(4,4))}, and “function” is {linear, polynomial(2)}.
Thus, we conducted regression analysis for a total of
4 x 2 x 3 x 2 = 48 configurations, which took under 15
minutes using MATLAB, to build the abstract model.
Finally, the best piecewise function found is:

a11Pogene + a12Pyy + al3  if Py, < 3.2
PD = { a21Peqene + a22Py, +a23  if 3.2 < Py, < 9.6 (8)
31 Pregehe + a32Psy + 33 if Ppy > 9.6

The domain for bandwidth was initially partitioned into
four equal bands. However, the subfunctions in the
middle two bands are merged because they are identical.

12%

= 10%
g (]
w 8%
=
Q2 6%
-
=]
T 4%
g
o ||| |||| il s
0% .....|||.I Maaa ..|.,..II.|||||,-I.I.||||I||| |I| dianl. L
AN
¢ & & P & ,»Q)b‘
&) & S . Q) N
X & & &N S +
& N & &R
¥ o & 2 &
NG AS) QO Q/’b S
AN &

Fig. 10: Prediction precision for eight PARSEC bench-
marks, with each co-running with 10 workloads gener-
ated from SPEC20006 and PARSEC benchmarks.

5.1.2 Applying Phase 2

In the second phase, we follow the four steps described
in Section 3.2.2 to instantiate the above abstract model
for a new application A. As the function is linear, we
sample four workloads (or points) from each of the three
subdomains to obtain 4 x 3 = 12 workloads, create an
interference table and determine its application-specific
coefficients. We can then use the instantiated model to
predict its performance degradation when co-located.
And the predictor functions for eight SPEC2006 bench-
marks can be found in Appendix A. For 433.milc, the
subfunction under P,, < 3.2 does not exist, because its
own bandwidth consumption is larger than 3.2GB/s.

5.2 Prediction Precision

We show that our predictors (with some given in Ap-
pendix A) are precise for both benchmarks and real-
world applications.

5.2.1 Single-Threaded SPEC Benchmarks

We focus on the 18 SPEC2006 benchmarks that are not
included in the training set. We randomly generated 200
co-running workloads from these 18 benchmarks and
randomly picked one representative for each workload.
For the 200 representative workloads selected, Figure 9
depicts the real and predicted performance slowdowns
for each benchmark. In most cases, the predicted per-
formance degradation is close to the real one, with the
prediction errors ranging from 0.0% to 8.6% with an
average of 0.2%.

5.2.2 Multi-Threaded PARSEC Benchmarks

We also evaluate our approach using eight multi-
threaded PARSEC benchmarks. Each benchmark is con-
figured to have two threads, with one thread per ded-
icated core. In addition, the thread-to-core mappings
are determined statically. We randomly generated 10
workloads from SPEC2006 and PARSEC benchmarks to
co-run with each PARSEC benchmark, and the prediction
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Fig. 9: Prediction precision for 200 randomly generated workloads from 18 SPEC2006 benchmarks. For each work-
load (with four benchmarks), the real and predicted performance slowdowns of a randomly picked representative

are shown.

errors are shown in Figure 10. For each PARSEC bench-
mark depicted along the x-axis, each bar corresponds
to one workload, representing the absolute value of
the predicted value minus the real value. The absolute
values of prediction errors are less than 2% in most cases,
ranging from 0% to 5.5% with an average of 1.1%.

5.2.3 Datacenter Applications

Let us consider the nine datacenter applications avail-
able to us whose detailed descriptions are present in
Appendix D, with five oriented to process large data
and implemented using MapReduce. For each applica-
tion, we randomly generated 15 workloads from these
applications to co-run with it. Figure 11 depicts both
the real and predicted performance slowdowns for each
application. In most cases, the predicted performance
degradation is close to the real one. The prediction errors
range from 0.0% to 5% with an average of only 0.3%.

5.3 One More Platform

We discuss briefly our results on one more platform:
a 2.13GHz octa-core Intel Xeon E7-8830, with a private
32KB L1 D-cache, a private 32KB L1 I-cache, a private
256KB L2 cache, a shared 24MB L3 cache and a memory
bandwidth of 32GB/s.

With the same warehouse created earlier, we repeat
the same steps discussed in Section 5.1 to build an
abstract model for the new platform in the first phase.
The training set obtained has 90 programs for the octa-
core Xeon. The abstract model is instantiated similarly
for each new program.

For the octa-core Xeon, there are 24 SPEC2006 bench-
marks not included in its training set. We randomly gen-
erated 100 co-running workloads and randomly picked
two representatives for each workload. Figure 12 depicts
the prediction error distribution for the 200 represen-
tatives selected. The horizontal axis is prediction error
while the vertical axis is cumulative distribution func-
tion. The prediction errors range from 0.0% to 5.54%,
with an average of 0.79% while about 70% of represen-
tatives exhibit a prediction error less than 1%.
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Fig. 12: Prediction error distribution for 100 randomly
generated workloads from 24 SPEC2006 benchmarks
on the octa-core Intel Xeon. For each workload, the
prediction errors of two randomly picked representatives
are included.

5.4 Evaluating Inter-Thread Contention for Multi-
Threaded Applications

In this section, we first evaluate our model from the
perspective of the prediction accuracy for accumulated
CPU cycles, and then we take the cost of thread synchro-
nization into consideration, demonstrate the predicted
speedups varying with the number of threads using our
inter-thread contention model (Section 5.4.1) and briefly
discuss the data sharing of multi-threaded applications
(Section 5.4.2).

The main platform for evaluating the multi-threaded
applications is a 2.4GHz Intel six-core E5645 processor
with a private 32KB L1 D-cache, a private 32KB L1 I-
cache, a private 256KB L2 cache, a shared 12MB L3 cache
and a memory bandwidth of 10.67GB/s. The reason
that we did not select the Intel platform with 8 cores
in Section 5.3 is that it has very large shared cache
(24MB) and PARSEC benchmarks can not exhibit inter-
thread contention at all. Take facesim for instance, the
accumulated CPU cycles increase only 1.9% when we
scale it to occupy all available cores of the octa-core Intel
platform.

We use PARSEC[4] to evaluate our model for
predicting inter-thread contention. We select three
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Fig. 13: Prediction precision of accumulated CPU cycles
for facesim.

representative benchmarks for evaluation: facesim,
streamcluster, x264. The first two are selected be-
cause they are memory-intensive and would intro-
duce inter-thread contention when multiple threads are
launched [46]. x264 is selected as a representative
pipelined application. All benchmarks are compiled us-
ing default gcc-pthreads configuration provided by
PARSEC.

5.4.1 Prediction Accuracy of CPU Cycles

In this section, we present our evaluation results of
CPU cycles and speedup for the three benchmarks, i.e.,
facesim and streamcluster for memory-intensive,
and x264 for pipelined application. We focus only on
the parallel regions and ignore all sequential regions.
Memory-Intensive Applications. Figure 13 and Fig-
ure 14 depicts the prediction precision of accumulated
CPU cycles for facesim and streamcluster respec-
tively, with the horizontal axis representing the num-
ber of threads and the vertical axis representing the
accumulated CPU cycles normalized to single-threaded
execution. The blue bars represent real CPU cycles while
the red bars are predicted values using our inter-thread
contention model. For facesim, the results for 5 threads
are not shown because the benchmark itself does not
enable to launch 5 threads. Figure 13 and Figure 14 show
that our predicted CPU cycles are very close to real ones.

M Real M Predicted

2

1.5

1
0
2 3 4 5 6

Number of Threads

Normalized CPU Cycles

Fig. 14: Prediction precision of accumulated CPU cycles
for streamcluster.
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Fig. 15: Prediction precision of speedup over single-
threaded for facesim.

Specifically, for facesim the average prediction error is
only 1.3%. For streamcluster, the average prediction
error is 1.2%.

For non-pipelined memory-intensive applications, our
model achieve good accuracy when predicting accu-
mulated CPU cycles. And we further use our model
to predict the real execution time and predict the real
scalability.

Figure 15 and Figure 16 present the predicted
speedups in terms of execution time for facesim and
streamcluster, with the horizontal axis representing
the number of threads and the vertical axis representing
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Fig. 16: Prediction precision of speedup over single-
threaded for streamcluster.
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Fig. 17: Prediction precision of accumulated CPU cycles
for x264.

the speedup in terms of execution time. The blue and red

bars represent real and predicted values, respectively.
In particular, we compute the execution time of a

multi-threaded application using the formula:

EueTime — CPUTime + SyncTime ©)
n
where
CPUTime — CPUCYAes (10)
freq

n is number of threads, C PU Cycles is accumulated CPU
cycles predicted using our model, fregq is the frequency
of the processor, and SyncT'ime is time consumed for
synchronization and is obtained via profiling. As shown
by Figure 15 and Figure 16, our model can be used to
precisely predict the scalability, with the average error
of 1.3% for facesim and 0.9% for streamcluster.

In summary, since inter-thread contention can be ac-
curately captured, our model can precisely predict the
scalability for multi-threaded applications.

Pipelined Applications. Figure 17 shows the predic-
tion precision of accumulated CPU cycles for x264, with
an average error of 0.56%. Compare with the above two
memory-intensive applications, x264 suffers less from
inter-thread contention. In particular, when the number
of threads is set to 6, the CPU cycles for facesim
and streamcluster are increased by 39% and 30%
respectively, while only 10% for x264.
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Fig. 18: Prediction precision of speedup over single-
threaded for x264.

Figure 18 further depicts the prediction accuracy of
speedup for x264 in terms of the execution time, with
an average error of 0.91%.

5.4.2 Discussion on Data Sharing

In this section, we briefly discuss data sharing and
present some experimental results to demonstrate that
on modern machines data sharing is not a performance-
critical issue, using the PARSEC benchmarks and the six-
core Intel platform.

Data sharing can affect multi-threaded applications’
performance both positively and negatively. On the
one hand, data sharing can make applications use
shared cache collaboratively, e.g. prefetch data construc-
tively [52]. On the other hand, it introduces cache coher-
ence traffic, causing increased cache access latency and
reduced bandwidth to caches [33].

Thus, we focus on all the read requests to LLC, and
compute the percentage of the “shared” cache line ac-
cesses (a shared cache line means that the line is located
in more than one core’s private caches) [52]. A larger
value indicates higher data sharing. The values for three
representative benchmarks facesim, streamcluster,
x264 are 0.9%, 4.5%, 0.5%, respectively when 6 threads
are running. The results illustrate that effect of data
sharing can be ignored.

5.5 Effects of Inclusive and Non-Inclusive Cache
Designs on Performance Interference

Intel and AMD processor families have distinct cache
sharing policies, inclusive and non-inclusive, respec-
tively. We analyze how different cache designs affect the
performance interference for co-located applications.
For processors with an inclusive cache hierarchy, in-
clusion victims are introduced which may exacerbate
cache contention. Consider a multicore processor with
an inclusive cache. When applications A and B are co-
located on the same processor (different cores), there
may be shared cache contention between A and B. Thus,
for each application, say A, some data of its working
set may be evicted from the shared cache before they
are fully used. To maintain inclusion, these data have to
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Fig. 19: Normalized increases of execution cycles, private
L2 and shared L3 cache miss ratios for INTERFEREE when
co-run with FLUSHER on two different platforms.

be purged from A’s private cache. The resulting cache
misses are known as inclusion victims [14].

5.5.1 Experimental Design

We use two quad-core platforms, the Intel platform used
in Sections 5.1 and a 2.20GHz quad-core AMD Opteron
8374, with a private 64KB L1 D-cache, a private 64KB L1
I-cache, a private 512KB L2 cache, a shared 6MB L3 cache
and a memory bandwidth of 12.8GB/s. In particular, the
Intel platform has an inclusive LLC [33] and the AMD
platform has an non-inclusive LLC [33]. We demonstrate
how these two different cache sharing policies will affect
performance interference with a synthesized STREAM
kernel [31]. We refer to this kernel as INTERFEREE and
analyze its performance degradation and behavior vari-
ations when it is co-located. INTERFEREE is designed to
periodically generate private L2 cache miss and issue
shared L3 cache access requests in solo execution. Thus,
when co-located with the L3 cache being contended,
INTERFEREE is expected to suffer from the inclusion-
victim problem on the Intel platform. Therefore, we have
designed the INTERFEREE with the following principles:

o Its working set (as an array) exceeds per-core’s
private cache size but not the shared cache size.
This ensures that the data that are missed in the
L2 cache can be found in the L3 cache. As a result,
the working set of size 1.25x(L1’s size + L2’s size)
is used for both the Intel and AMD platforms.

o The (working set) array is randomly accessed in or-
der to periodically generate L2 cache misses. Mean-
while, the random access invalidates the hardware
prefetcher. As a result, the cache misses represent
the dominant factor for performance variations.

o The above access pattern is repeated for sufficiently
many times to guarantee that the kernel runs for a
long time and thus exhibits stable behaviors.

To generate cache contention with INTERFEREE, we
have synthesized a cache flusher, called FLUSHER, as the
co-runner, which continuously accesses a large array in a
streaming mode. We co-run INTERFEREE with FLUSHER
on the two platforms and analyze the behaviors of
INTERFEREE with the help of PMUs.

12

5.5.2 Analysis

Figure 19 depicts the experimental results on the Intel
and AMD platforms. For each platform, there are three
groups of bars representing the normalized execution
cycles, L2 cache miss ratios and L3 cache miss ratios
obtained when INTERFEREE runs alone and together
with FLUSHER. The execution cycles are normalized to
solo execution (against the left y-axis). The L2 and L3
cache miss ratios are given against the right y-axis.

On the AMD platform, when INTERFEREE is co-
running with FLUSHER, the L3 cache miss ratio increases
dramatically, from 0% to 52.6%, due to shared cache
contention caused by the cache flushing behavior of
FLUSHER. Meanwhile, the L2 cache miss ratio remains
unchanged, since the cache hierarchy is non-inclusive.
Thus, the data in the L2 cache are not affected by the
increased L3 cache misses, but the number of execution
cycles has increased due to the increased L2 cache miss
penalty.

In contrast, the situation is different on the Intel plat-
form. As shown in Figure 19(b), the L3 cache miss ratio
also increases dramatically, from 0% to 54.7%. However,
due to inclusion victims, the L2 cache miss ratio also
exhibits a significant increase, from 32.3% to 51.1%. As
a result, the performance degradation of INTERFEREE is
more significant on the Intel platform.

Our results show that inclusive caches can exacerbate
cache contention for co-running applications. However,
this does not mean that Intel processors will cause
more severe performance interference than AMD pro-
cessors. The performance interference for an application
is affected by a number of architectural issues, e.g.,
cache associativity, cache replacement strategy, hardware
prefetcher, memory controller. In this experiment, we
have designed INTERFEREE to expose the effects of cache
sharing policies while minimizing the influences of other
issues on performance interference.

6 RELATED WORK

There has been a lot of work on addressing the con-
tention for shared resources, especially shared cache, for
multicore processors. Cache partitioning has been used
to mitigate shared cache contention [38], [35], [36], [53],
[17], [34], [6], [23], [44], [45]. For hardware solutions,
cache resources are allocated to applications based on
benefit rather than rate of demand [38], [35], [36], [56].
For software solutions, page coloring is used instead [6],
[23], [53].

In the case of the contention for other shared resources
such as memory bandwidth and on-chip interconnect,
contention-aware scheduling represents a useful approach
to mitigate the contention. By default, these shared re-
sources are application-unaware, causing performance
interference between co-running applications. The main
intuition behind contention-aware scheduling is to clas-
sify qualitatively all applications into two categories de-
pending on whether they consume shared resources



aggressively or not. With this classification, the sched-
uler can mix the applications from the two categories
to mitigate resource contention when deciding which
applications should be grouped together to run simulta-
neously on the same multicore processor [16], [19], [49],
[47], [25], [26]. Furthermore, the scheduler can also adjust
the resources allocated to an application to mitigate the
contention for shared resources [56], [49], [11], [48], [42],
[43].

There are also extensive studies on understanding and
predicting shared cache contention on multicore pro-
cessors. The best known techniques are Stack Distance
Profiles (SDP) [30] and Miss Rate Curves (MRC) [30], [5],
which shed light on an application’s reuse behavior with
its cache sharing.

These earlier techniques cannot be used directly to
solve the datacenter co-location problem, which requires
the ability of predicting quantitatively the performance
interference between co-running applications on a mul-
ticore processor. Recently, Bubble-Up [25], [26], [42]
predicts the performance degradation that results from
contention for the shared memory subsystem. This is
the closest related to our work. However, Bubble-Up is
limited to predicting interference between two applica-
tions. SMiTe [54] is also proposed to predict performance
interference caused by SMT co-location. Bandit [9] does
not have this limitation but focuses only on bandwidth
contention. In contrast, our two-phase approach applies
to arbitrary co-running applications competing for mul-
tiple shared resources. In addition, this paper represents
the first to use a piecewise predictor function.

Finally, once performance interference is predicted,
applications can be mapped to multicores under some
scheduling policies and optimization goals [15], [56].
Bubble-flux [50] probes and schedules low-priority ap-
plications dynamically to guarantee the QoS of high-
priority applications and improve the overall utilization
of datacenters. The performance interference model can
be leveraged by the compiler to include some co-runner-
aware code transformations and optimizations [2], [42].
To enable low overhead online code transformation,
Protean Code[20] is also developed. Furthermore, some
domain-specific optimizations [8], [7] can be applied
to some datacenter applications to make them co-locate
better. Besides, as modern datacenters are more consid-
ered as heterogeneous, identify and utilize the perfor-
mance opportunity behind the heterogeneity is also been
researched[28].

7 CONCLUSION AND FUTURE WORK

In this paper, we present a two-phase regression ap-
proach to predicting the performance interference be-
tween multiple applications co-running on a multi-
core processor. We have experimentally validated the
existence of a piecewise function between the aggre-
gate shared resource consumptions and the performance
degradation of an application when co-located. By pro-
ceeding in two phases rather than one, we can obtain a
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predictor function scalably. Furthermore, the prediction
model obtained for an application is able to characterize
its contentiousness and sensitivity as well.

In future work, we plan to generalize our model
so that more multi-threaded programs can be handled.
Presently, our model works for a multi-threaded pro-
gram if the program has a fixed number of threads,
statically grouped, so that the threads in a group always
run together on a processor, with at most one thread
per core. In addition, we also plan to study how to
consider positive interactions between applications, e.g.,
those caused by applications sharing the same OS utility.
Finally, it would be interesting to investigate how to
predict performance interference by combining static
program analysis, particularly pointer analysis [37], [39],
[51] with profiling.
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